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Abstract. We present a fully automatic method for segmentation of
kidney tumors in CT volumetric data based on DeepLab v3+, the state-
of-the-art model in semantic segmentation in natural images. We adapt
the architecture to process medical data and reduce the computational
complexity to allow training 3D models. We evaluate our approach on
the Kidney Tumor Segmentation Challenge 2019 dataset, and define a
validation set to experiment with the model’s parameters. In our valida-
tion set, we report a dice score of XX for the kidney class and YY for
the tumor class.
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1 Introduction

Kidney cancer is the 12th most common cancer worldwide, with over 400,000
new cases diagnosed in 2018 [1]. Although it is one of the most common cause of
death from cancer, the survival rates are relatively high in developed countries,
but low in lower income countries where cancer is often detected at later stages.
The standard tests to diagnose kidney cancer are ultrasound scans, cystoscopy
or CT scans of the urinary system (CT urogram) [2]. The treatment options
depend on certain factors including the size of the tumor and where it is located
in the kidney and if has spread to another part of the body. The automatic
segmentation and localization of tumors in CT scans can contribute to the di-
agnosis, and thus, to select the most appropriate treatment during early stages
of the tumor.

Deep learning models, such as Fully Convolutional Networks [3], have been
widely used for segmentation tasks in the medical image domain. For instance,
U-Net [4] is an extension of the FCN, designed for cell segmentation in light
microscopy images. An important modification of U-Net is that the expansive
(upsampling) path has a large number of feature channels (similar to the con-
tracting path), and they merge high resolution features from the contracting
path with the upsampled outputs to refine the final prediction.

The drawbacks of traditional segmentation methods include the reduction
of the original resolution at the encoding phase and objects at different scales.
DeepLab [5] addresses these challenges by replacing pooling operations with
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dilated convolutions. To capture multi-scale features, they apply several paral-
lel atrous convolutions with different dilation rates, which they called Atrous
Spatial Pyramid Pooling (ASPP). Atrous convolution generalizes the standard
convolution operation allowing to adjust the fielter’s field of view to incorpo-
rate multi-scale information. Furthermore, in their more recent version [6], they
define the atrous separable convolution to reduce the computation complexity,
based on the depthwise separable convolution (DSC). For the decoder, instead
of using a one-step interpolation to recover the original size, they concatenate
the upsampled features from the encoder with low-level features from the net-
work backbone, followed by 3 x 3 convolutions to refine the features and a final
bilinear upsampling.

In this paper, we present an adaptation of DeepLab to segment kidneys
and tumors in multimodal and three-dimensional data. We extend the ideas
developed for the inherent challenges of semantic segmentation in natural images,
to accurately segment tumors at different scales within or protruding from the
kidneys. In addition, to deal with the class imbalance created by the small tumor
size compared to the kidneys and background, we propose a combination of two
loss functions to penalize wrong and missed predictions. Our 3D model consists of
a single network that can be trained end-to-end with less than 560k parameters.

2 Method
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Fig. 1. Overview of the architecture. The method has an encoder to extract features
from the input image and a decoder to reconstruct the high resolution segmentations.

Our method is based on DeepLab v3+ [6], the current state-of-the-art in se-
mantic segmentation. The method is composed of an encoder to extract features
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form the image in different stages, and a decoder to recover the resolution lost
during the previous step. We adapt the architecture to analyze medical images
by extending it to 3D, which allows it to leverage on the rich information pro-
vided by CT scans. However, processing volumetric data is highly expensive in
terms of memory and computational power. Therefore, we also reduce the size
of the model by decreasing the number of layers and feature maps produced by
each one. An overview of the architecture can be seen in figure 1.

2.1 Architecture

For the encoder we use an Xception [7] backbone with four stages. The first three
stages are composed of two residual blocks with N depthwise separable convolu-
tions, and are separated using convolutions with stride = 2. The last stage has
two dilated separable convolutions to increase the receptive field without loosing
resolution. After the final stage, we use an ASPP with dropout 0.5 to obtain the
features that will be sent to the decoder. In the ASPP, the dilations used are
[1,1,2,3] and every layer produces 32 feature maps.

The decoder receives the final output and features extracted in the second
stage of the encoder. The former are upsampled to match the size of the latter,
and then both outputs are concatenated and combined using two convolutional
layers that produce 48 feature maps each, with dropouts 0.5 and 0.1, respectively.
Finally, the output is upsampled back to the original resolution and a 1 x 1 x 1
layer is used to produce the final segmentation.

Throughout the network, all the convolutional layers, except the one to pro-
duce the output, are followed by a batch normalization and a ReLLU operation.

Input [Conv (8), lxlxl v
DSC (16) x

Stage 1 DSC (16) x 2, 5 = 2 3D DSC (ch)
DSC (32) x 2* Batch Norm | x N

Stage 2
ggg 82; x 3, stride 2 RelU

Stage 3 DSC (64) x -

Stage 4 DSC (96) x 1 dilation 2 \J

48¢ %Ipsc (128) x 1, dilation 2*

Table 1. Encoder architecture. The Fig. 2. Depthwise Separable Convolution
values in parenthesis represent the (DSC) block configuration. If the block
number of feature maps produced. has stride s > 1, one DSC layer with
The blocks with * produce the out- stride = s is included before the residual
puts that will be sent to the decoder. connection
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2.2 Loss Functions

We use the Tversky loss [8], which is a generalization of Dice loss that weights
the false positives (FP) and false negatives (FN). However, with this loss we
can obtain a good recall, but a very low accuracy. For this reason, we also use
the Focal loss [9] with v = 2 to focus on examples that are hard to classify.
This loss takes into account the imbalance between foreground and background
voxels inherent to the problem of medical images segmentation. Our final loss is
a weighted sum of both metrics.

2.3 Data Pre- and Post-processing

Following the procedure suggested by nnU-net [10], the images are normalized
using the mean and standard deviation of all foreground pixels of the training
dataset. Also, the range of intensities are limited between the 0.05 and 99.5
percentile of the foreground values. To reduce the memory usage during training,
if the CT scans had more than 200 slices, the image was sliced along the z-axis
making sure that we keep all the foreground pixels. For the final results, we
refine the network’s predictions applying morphological operations. We define a
threshold to determine if the voxels of a predicted connected component should
be assigned to the closest category.

2.4 Implementation Details

We interpolated the raw data provided by the challenge, which has different voxel
spacing, by first calculating the median spacing of the entire dataset and then
accommodating all the scans to match those values using trilinear interpolation.
Afterwards, we normalized the images following the procedure explained in the
previous section. With these images we pretraied a model from scratch using
randomly extracted patches of size 48 x 48 x 48 from the images, making sure that
the central voxel has equal probabilities of belonging to the different categories.
The batch size was set to 39 patches per worker and was collected from 13
patients. The model was trained for a maximum of 300 epochs or until the
learning rate became lower than le~®. We used Adam optimizer with an initial
learning rate of le=3 that was multiplied by 0.1 when the loss had not lowered
for 20 epochs. We trained the model using 2 Titan Xp GPUs.

Starting from this weights, we trained a model on the interpolated data
provided by the challenge using patches of size 44 x 44 x 44. This change in size
is made because the new images are smaller than the original ones, hence some
images should be padded in order to maintain the size of the patches and this
would introduce noise to the model.

In the inference stage, the patches are extracted uniformly and their outer
voxels are discarded after the processing. This procedure is done to alleviate
the noise introduced by the padded convolutions. Lastly, the whole volume is
reconstructed using the segmented patches.
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3 Experiments

3.1 Experimental Framework

Dataset We train the model on the Kidney Tumor Segmentation Challenge
(KiTS) 2019 dataset, which contains CT scans of 210 kidney cancer patients for
training and 90 for model evaluation [11]. Each patient has its corresponding
semantic segmentation annotation with three labels: background, kidney and
tumor. We train our method on a subset of the training set that has 147 patients
and validate it on the remaining 63.

Evaluation We measure the performance of out method using standard Dice
coefficient over each label, Recall and Precision. The results reported are calcu-
lated over our validation set.

3.2 Ablation Experiments

Architecture We test the effect of changing the size of the architecture by
adding an extra layer to the final stage; increasing the number of channels pro-
duced by every layer of the ASPP module; and by altering the decoder to receive
outputs from each stage of the encoder and combine them progressively using 1
or 2 layers. The results are shown in table 2. The results show that increasing
the size of the overall architecture does not represent an increase in the accuracy.

Dice Recall Precision
Kidney| Tumor|Kidney| Tumor|Kidney| Tumor
Bigger encoder | 75.41 | 14.89 | 89.39 | 41.88 | 62.12 | 9.8
Bigger ASPP 707 | 12.64 | 83.10 | 34.21 | 56.6 | 8.16
Decoder every stage| ¢ go | 16 91 | 93.06 | 40.67 | 66.39 | 11.36
1 convolution
Decoder every stage| - o6 1 13 g5 | 8912 | 43.69 | 62.01 | 8.99
2 convolutions

Proposed method | 75.6 | 14.03 | 82.95 | 33.6 | 61.83 | 8.86

Table 2. Effect of changing the architecture.

Loss We test the effect of changing the weights of the loss function. Table
3 shows that the best overall Dice score is obtained when the Focal loss is
multiplied by 0.5.

Postprocessing With our postprocessing, the results from the best method
obtained improve by a large margin, as shown in table 4.
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Dice Recall Precision
Kidney|Tumor|Kidney|Tumor|Kidney| Tumor
Tversky + 5*Focal | 86.41 | 23.55 | 89.28 | 41.55 | 77.01 | 16.08
Tversky + 2*¥Focal | 87.25 | 24.97 | 87.56 | 35.66 | 78.30 | 17.43
Tversky + 0.5*¥Focal| 86.72 | 24.43 | 89.68 | 41.40 | 77.48 | 16.84
Tversky + 0.2*Focal| 86.41 | 25.49 | 88.42 | 41.97 | 76.98 | 17.69

Table 3. Effect of changing the loss function.

Dice Recall Precision
Kidney|Tumor|Kidney| Tumor|Kidney | Tumor
Final score| 87.23 | 38.41 | 84.26 | 41.06 | 78.99 | 29.21

Table 4. Best method after postprocessing.
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